Serveur d'exploration H2N2

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

A contribution of understanding the stability of commercial PLA films for food packaging and its surface modifications

Identifieur interne : 000248 ( Main/Exploration ); précédent : 000247; suivant : 000249

A contribution of understanding the stability of commercial PLA films for food packaging and its surface modifications

Auteurs : Jeancarlo Renzo Rocca Smith [France]

Source :

RBID : Hal:tel-01763061

Descripteurs français

English descriptors

Abstract

Poly(lactic acid) (PLA) is a biodegradable and renewable polyester, which is considered as the most promising eco-friendly substitute of conventional plastics. It is mainly used for food packaging applications, but some drawbacks still reduce its applications. On the one hand, its low barrier performance to gases (e.g. O2 and CO2) limits its use for applications requiring low gas transfer, such as modified atmosphere packaging (MAP) or for carbonate beverage packaging. On the other hand, its natural water sensitivity, which contributes to its biodegradation, limits its use for high moisture foods with long shelf life.Other biopolymers such as wheat gluten (WG) can be considered as interesting materials able to increase the PLA performances. WG is much more water sensitive, but it displays better gas barrier properties in dry surroundings. This complementarity in barrier performances drove us to study the development of multilayer complexes PLA-WG-PLA and to open unexplored application scenarios for these biopolymers.This project was thus intended to better understand how food components and use conditions could affect the performances of PLA films, and how these performances could be optimized by additional processing such as surface modifications (e.g. corona treatment and coatings).To that aim, three objectives were targeted:-To study the stability of industrially scale produced PLA films in contact with different molecules (CO2 and water) and in contact with vapour or liquid phases, with different pH, in order to mimic a wide range of food packaging applications.-To better understand the impact of some industrial processes such as corona or hot press treatments on PLA.-To combine PLA with WG layer to produce high barrier and biodegradable complexes.Different approaches coming from food engineering and material engineering were adopted. PLA films were produced at industrial scale by Taghleef Industries with specific surface treatments like corona. Wheat gluten films, coatings and layers were developed and optimized at lab scale as well as the 3-layers PLA-WG-PLA complexes. Different technologies able to mimic industrial processes were considered such as hot press, high pressure homogenization, ultrasounds, wet casting and spin coating. The physical and chemical properties of PLA films were then studied at the bulk and surface levels, from macroscopic to nanometer scale. The functional properties like permeability to gases (e.g. O2 and CO2) and water, gas and vapour sorption, mechanical and surface properties were also investigated.Exposed to CO2, PLA films exhibited a linear sorption behaviour with pressure, but the physical modifications induced by high pressure did not affect its use for food packaging. However, when exposed to moisture in both liquid and vapour state (i.e. environments from 50 to 100 % relative humidity (RH)), PLA was significantly degraded after two months at 50 °C (accelerated test) due to hydrolysis. This chemical deterioration was evidenced by a significant decrease of the molecular weight, which consequently induced a loss of transparency and an increase of the crystallinity. The hydrolysis was accelerated when the chemical potential of water was increased, and it was surprisingly higher for vapour compared to liquid state. In addition, pH did not affect the rate of hydrolysis.Knowing much better the limitation of PLA films, the challenge was to improve its functional properties by combining them with WG, as a high gas barrier bio-sourced and biodegradable polymer. The use of high pressure homogenization produced homogeneous WG coatings, with improved performances. This process was thus selected for making 3 layer complexes by assembly of a wheat gluten layer between two layers of PLA, together with corona treatment and hot press technologies.Corona treatment applied to PLA physically and chemically modified its surface at the nanometer scale (...)


Url:


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">A contribution of understanding the stability of commercial PLA films for food packaging and its surface modifications</title>
<title xml:lang="fr">Etude de la stabilité de films industriels de PLA et de leur modification de surface pour des applications en tant qu'emballage alimentaire biodégradable</title>
<author>
<name sortKey="Rocca Smith, Jeancarlo Renzo" sort="Rocca Smith, Jeancarlo Renzo" uniqKey="Rocca Smith J" first="Jeancarlo Renzo" last="Rocca Smith">Jeancarlo Renzo Rocca Smith</name>
<affiliation wicri:level="1">
<hal:affiliation type="laboratory" xml:id="struct-496972" status="VALID">
<idno type="RNSR">200715421L</idno>
<idno type="IdRef">159749085</idno>
<orgName>Procédés Alimentaires et Microbiologiques [Dijon]</orgName>
<orgName type="acronym">PAM</orgName>
<date type="start">2017-01-01</date>
<desc>
<address>
<addrLine>Université Bourgogne Franche-Comté - AgroSup Dijon - Batiment Epicure - 1 esplanade Erasme - F-21000 Dijon</addrLine>
<country key="FR"></country>
</address>
<ref type="url">http://www.umr-pam.fr/fr/</ref>
</desc>
<listRelation>
<relation active="#struct-300270" type="direct"></relation>
<relation name="UMR-MA 2012.02.102" active="#struct-415469" type="direct"></relation>
<relation active="#struct-426438" type="direct"></relation>
</listRelation>
<tutelles>
<tutelle active="#struct-300270" type="direct">
<org type="institution" xml:id="struct-300270" status="VALID">
<idno type="IdRef">02819005X</idno>
<orgName>Université de Bourgogne</orgName>
<orgName type="acronym">UB</orgName>
<desc>
<address>
<addrLine>Maison de l'université - Esplanade Érasme - BP 27877 - 21078 Dijon cedex</addrLine>
<country key="FR"></country>
</address>
<ref type="url">http://www.u-bourgogne.fr/</ref>
</desc>
</org>
</tutelle>
<tutelle name="UMR-MA 2012.02.102" active="#struct-415469" type="direct">
<org type="institution" xml:id="struct-415469" status="VALID">
<idno type="IdRef">13996634X</idno>
<orgName>AgroSup Dijon - Institut National Supérieur des Sciences Agronomiques, de l'Alimentation et de l'Environnement</orgName>
<date type="start">2009-03-01</date>
<desc>
<address>
<addrLine>26 Boulevard du Dr Petitjean - BP 87999 - 21079 Dijon cedex</addrLine>
<country key="FR"></country>
</address>
<ref type="url">http://www.agrosupdijon.fr/</ref>
</desc>
</org>
</tutelle>
<tutelle active="#struct-426438" type="direct">
<org type="regroupinstitution" xml:id="struct-426438" status="VALID">
<idno type="IdRef">200716271</idno>
<orgName>Université Bourgogne Franche-Comté [COMUE]</orgName>
<orgName type="acronym">UBFC</orgName>
<date type="start">2015-04-01</date>
<desc>
<address>
<country key="FR"></country>
</address>
<ref type="url">http://www.ubfc.fr</ref>
</desc>
</org>
</tutelle>
</tutelles>
</hal:affiliation>
<country>France</country>
<placeName>
<settlement type="city">Dijon</settlement>
<region type="region" nuts="2">Région Bourgogne</region>
</placeName>
<orgName type="university">Université de Bourgogne</orgName>
<orgName type="institution" wicri:auto="newGroup">Université de Bourgogne Franche-Comté</orgName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">HAL</idno>
<idno type="RBID">Hal:tel-01763061</idno>
<idno type="halId">tel-01763061</idno>
<idno type="halUri">https://tel.archives-ouvertes.fr/tel-01763061</idno>
<idno type="url">https://tel.archives-ouvertes.fr/tel-01763061</idno>
<date when="2017-03-13">2017-03-13</date>
<idno type="wicri:Area/Hal/Corpus">000006</idno>
<idno type="wicri:Area/Hal/Curation">000006</idno>
<idno type="wicri:Area/Hal/Checkpoint">000057</idno>
<idno type="wicri:explorRef" wicri:stream="Hal" wicri:step="Checkpoint">000057</idno>
<idno type="wicri:Area/Main/Merge">000248</idno>
<idno type="wicri:Area/Main/Curation">000248</idno>
<idno type="wicri:Area/Main/Exploration">000248</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">A contribution of understanding the stability of commercial PLA films for food packaging and its surface modifications</title>
<title xml:lang="fr">Etude de la stabilité de films industriels de PLA et de leur modification de surface pour des applications en tant qu'emballage alimentaire biodégradable</title>
<author>
<name sortKey="Rocca Smith, Jeancarlo Renzo" sort="Rocca Smith, Jeancarlo Renzo" uniqKey="Rocca Smith J" first="Jeancarlo Renzo" last="Rocca Smith">Jeancarlo Renzo Rocca Smith</name>
<affiliation wicri:level="1">
<hal:affiliation type="laboratory" xml:id="struct-496972" status="VALID">
<idno type="RNSR">200715421L</idno>
<idno type="IdRef">159749085</idno>
<orgName>Procédés Alimentaires et Microbiologiques [Dijon]</orgName>
<orgName type="acronym">PAM</orgName>
<date type="start">2017-01-01</date>
<desc>
<address>
<addrLine>Université Bourgogne Franche-Comté - AgroSup Dijon - Batiment Epicure - 1 esplanade Erasme - F-21000 Dijon</addrLine>
<country key="FR"></country>
</address>
<ref type="url">http://www.umr-pam.fr/fr/</ref>
</desc>
<listRelation>
<relation active="#struct-300270" type="direct"></relation>
<relation name="UMR-MA 2012.02.102" active="#struct-415469" type="direct"></relation>
<relation active="#struct-426438" type="direct"></relation>
</listRelation>
<tutelles>
<tutelle active="#struct-300270" type="direct">
<org type="institution" xml:id="struct-300270" status="VALID">
<idno type="IdRef">02819005X</idno>
<orgName>Université de Bourgogne</orgName>
<orgName type="acronym">UB</orgName>
<desc>
<address>
<addrLine>Maison de l'université - Esplanade Érasme - BP 27877 - 21078 Dijon cedex</addrLine>
<country key="FR"></country>
</address>
<ref type="url">http://www.u-bourgogne.fr/</ref>
</desc>
</org>
</tutelle>
<tutelle name="UMR-MA 2012.02.102" active="#struct-415469" type="direct">
<org type="institution" xml:id="struct-415469" status="VALID">
<idno type="IdRef">13996634X</idno>
<orgName>AgroSup Dijon - Institut National Supérieur des Sciences Agronomiques, de l'Alimentation et de l'Environnement</orgName>
<date type="start">2009-03-01</date>
<desc>
<address>
<addrLine>26 Boulevard du Dr Petitjean - BP 87999 - 21079 Dijon cedex</addrLine>
<country key="FR"></country>
</address>
<ref type="url">http://www.agrosupdijon.fr/</ref>
</desc>
</org>
</tutelle>
<tutelle active="#struct-426438" type="direct">
<org type="regroupinstitution" xml:id="struct-426438" status="VALID">
<idno type="IdRef">200716271</idno>
<orgName>Université Bourgogne Franche-Comté [COMUE]</orgName>
<orgName type="acronym">UBFC</orgName>
<date type="start">2015-04-01</date>
<desc>
<address>
<country key="FR"></country>
</address>
<ref type="url">http://www.ubfc.fr</ref>
</desc>
</org>
</tutelle>
</tutelles>
</hal:affiliation>
<country>France</country>
<placeName>
<settlement type="city">Dijon</settlement>
<region type="region" nuts="2">Région Bourgogne</region>
</placeName>
<orgName type="university">Université de Bourgogne</orgName>
<orgName type="institution" wicri:auto="newGroup">Université de Bourgogne Franche-Comté</orgName>
</affiliation>
</author>
</analytic>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="mix" xml:lang="en">
<term>Biobased complexes</term>
<term>Biodegradable multilayers</term>
<term>Biopolymer stability</term>
<term>Edible films</term>
<term>Food packaging</term>
<term>Laminates</term>
<term>PLA</term>
<term>Storage test</term>
<term>Surface modification</term>
<term>Wheat gluten films</term>
</keywords>
<keywords scheme="mix" xml:lang="fr">
<term>Acide polylactique (PLA)</term>
<term>Biodégradabilité</term>
<term>Emballage alimentaire</term>
<term>Emballage multicouche</term>
<term>Film comestible</term>
<term>Gluten de blé</term>
<term>Modification de surface</term>
<term>Stabilité des biopolymères</term>
<term>Vieillissement accéléré</term>
</keywords>
<keywords scheme="Wicri" type="topic" xml:lang="fr">
<term>Biodégradabilité</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>Poly(lactic acid) (PLA) is a biodegradable and renewable polyester, which is considered as the most promising eco-friendly substitute of conventional plastics. It is mainly used for food packaging applications, but some drawbacks still reduce its applications. On the one hand, its low barrier performance to gases (e.g. O2 and CO2) limits its use for applications requiring low gas transfer, such as modified atmosphere packaging (MAP) or for carbonate beverage packaging. On the other hand, its natural water sensitivity, which contributes to its biodegradation, limits its use for high moisture foods with long shelf life.Other biopolymers such as wheat gluten (WG) can be considered as interesting materials able to increase the PLA performances. WG is much more water sensitive, but it displays better gas barrier properties in dry surroundings. This complementarity in barrier performances drove us to study the development of multilayer complexes PLA-WG-PLA and to open unexplored application scenarios for these biopolymers.This project was thus intended to better understand how food components and use conditions could affect the performances of PLA films, and how these performances could be optimized by additional processing such as surface modifications (e.g. corona treatment and coatings).To that aim, three objectives were targeted:-To study the stability of industrially scale produced PLA films in contact with different molecules (CO2 and water) and in contact with vapour or liquid phases, with different pH, in order to mimic a wide range of food packaging applications.-To better understand the impact of some industrial processes such as corona or hot press treatments on PLA.-To combine PLA with WG layer to produce high barrier and biodegradable complexes.Different approaches coming from food engineering and material engineering were adopted. PLA films were produced at industrial scale by Taghleef Industries with specific surface treatments like corona. Wheat gluten films, coatings and layers were developed and optimized at lab scale as well as the 3-layers PLA-WG-PLA complexes. Different technologies able to mimic industrial processes were considered such as hot press, high pressure homogenization, ultrasounds, wet casting and spin coating. The physical and chemical properties of PLA films were then studied at the bulk and surface levels, from macroscopic to nanometer scale. The functional properties like permeability to gases (e.g. O2 and CO2) and water, gas and vapour sorption, mechanical and surface properties were also investigated.Exposed to CO2, PLA films exhibited a linear sorption behaviour with pressure, but the physical modifications induced by high pressure did not affect its use for food packaging. However, when exposed to moisture in both liquid and vapour state (i.e. environments from 50 to 100 % relative humidity (RH)), PLA was significantly degraded after two months at 50 °C (accelerated test) due to hydrolysis. This chemical deterioration was evidenced by a significant decrease of the molecular weight, which consequently induced a loss of transparency and an increase of the crystallinity. The hydrolysis was accelerated when the chemical potential of water was increased, and it was surprisingly higher for vapour compared to liquid state. In addition, pH did not affect the rate of hydrolysis.Knowing much better the limitation of PLA films, the challenge was to improve its functional properties by combining them with WG, as a high gas barrier bio-sourced and biodegradable polymer. The use of high pressure homogenization produced homogeneous WG coatings, with improved performances. This process was thus selected for making 3 layer complexes by assembly of a wheat gluten layer between two layers of PLA, together with corona treatment and hot press technologies.Corona treatment applied to PLA physically and chemically modified its surface at the nanometer scale (...)</p>
</div>
</front>
</TEI>
<affiliations>
<list>
<country>
<li>France</li>
</country>
<region>
<li>Région Bourgogne</li>
</region>
<settlement>
<li>Dijon</li>
</settlement>
<orgName>
<li>Université de Bourgogne</li>
<li>Université de Bourgogne Franche-Comté</li>
</orgName>
</list>
<tree>
<country name="France">
<region name="Région Bourgogne">
<name sortKey="Rocca Smith, Jeancarlo Renzo" sort="Rocca Smith, Jeancarlo Renzo" uniqKey="Rocca Smith J" first="Jeancarlo Renzo" last="Rocca Smith">Jeancarlo Renzo Rocca Smith</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/H2N2V1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000248 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000248 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    H2N2V1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     Hal:tel-01763061
   |texte=   A contribution of understanding the stability of commercial PLA films for food packaging and its surface modifications
}}

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Apr 14 19:59:40 2020. Site generation: Thu Mar 25 15:38:26 2021